

Breaking Through Barriers in Neurology and Gene Therapy

Corporate Deck | March 2023

Forward-looking statements

This presentation contains forward-looking statements for the purposes of the safe harbor provisions under The Private Securities Litigation Reform Act of 1995 and other federal securities laws. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "target," "project," "intend," "future," "potential," or "continue," and other similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. These forward-looking statements include, among other things, statements about Voyager's ability to continue to identify and develop proprietary capsids from its TRACER AAV capsid discovery platform and to leverage receptor identification to enable rational capsid design; Voyager's ability to identify and develop proprietary capsids from its TRACER AAV capsid discovery platform with increased transgene expression, increased blood-brain barrier penetration and increased biodistribution compared to conventional AAV5 and AAV9 capsids and which are differentiated from capsids identified by other capsid developers; Voyager's ability to utilize its novel proprietary capsids in its own product development programs and to progress its own product development programs; Voyager's ability to attract parties to license its novel proprietary capsids or to participate with Voyager in research and development collaborations utilizing its novel proprietary capsids; Voyager's ability to advance its AAVbased gene therapy and anti-tau antibody programs, including identifying a lead development candidate for each program; Voyager's ability to perform its obligations under its license option agreements with Novartis and Pfizer; Voyager's ability to generate near term and long term funding through upfront, milestone and royalty based fees license option agreements with Pfizer, Novartis and other parties; Voyager's ability to maintain its current partnerships and collaborations and to enter into new partnerships or collaborations; the ability of newly appointed Board members and senior officers to join Voyager and to perform their roles successfully; and the sufficiency of Voyager's cash resources. These forward-looking statements are only predictions, and Voyager may not actually achieve the plans, intentions, or expectations disclosed in the forward-looking statements. All forward-looking statements are subject to risks and uncertainties that may cause actual results to differ materially from those that Voyager expected. Such risks and uncertainties include, among others, the continued development of various technology platforms, including Voyager's TRACER capsid discovery platform; Voyager's scientific approach and program development progress, and the restricted supply of critical research components; the ability to attract and retain talented contractors and employees, including key scientists and business leaders; the ability to create and protect intellectual property; the sufficiency of cash resources; the possibility and the timing of the exercise of development, commercialization, license and other options under the Pfizer and Novartis license option agreements and other collaborations; the ability of Voyager to negotiate and complete other licensing or collaboration agreements on terms acceptable to Voyager and third parties; the success of programs controlled by third party collaboration parties in which Voyager retains a financial interest, and the success of Voyager's product candidates. These statements are also subject to a number of material risks and uncertainties that are described in Voyager's most recent Annual Report on Form 10-K filed with the Securities and Exchange Commission, as updated by its subsequent filings with the Securities and Exchange Commission. Any forward-looking statement speaks only as of the date on which this presentation was posted to Voyager's website. Voyager undertakes no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law. © 2023 Voyager Therapeutics. Inc.

Voyager Therapeutics (Nasdaq: VYGR) Investment Thesis

Breaking Through Barriers in Neurology and Gene Therapy

The TRACER[™] AAV Difference

- Potential to address gene therapy's narrow therapeutic window: superior BBB penetration at low doses
- Receptor identification supports potential for human translation
- Alliances with gene therapy leaders: Pfizer, Novartis, Neurocrine

Capsids Plus Diverse Payloads

- Validated targets and biomarkers allow potential for rapid proof-of-biology
- Indications with high unmet need: ALS, Alzheimer's, Parkinson's, Friedreich's Ataxia
- Nominating lead candidates; IND filings expected 2024/2025

Generating Non-Dilutive Revenue

- Capsid license structure exclusive to target, NOT capsid – enables multiple licenses
- Pfizer and Novartis: license agreements for capsids against CNS targets
- Neurocrine: Collaboration on GBA1, FA, and five undisclosed targets
- Exploring additional partnerships

CNS pipeline focuses on validated targets with high potential value

Program (Mechanism)	am (Mechanism) Ownership		Late Research	IND-Enabling
ALZHEIMER'S DISEASE Passive Tau Antibody	Wholly-Owned			
FRIEDREICH'S ATAXIA FXN Gene Therapy (Gene Replacement)	Neurocrine Collaboration (VYGR has 40% cost/profit split option)*			
ALS SOD1 Gene Therapy (Gene Silencing)	Wholly-Owned			
PARKINSON'S / OTHERS GBA1 Gene Therapy (Gene Replacement)	Neurocrine Collaboration (VYGR has 50% cost/profit split option)**			
EARLY RESEARCH PROGRAMS Allele-specific mHTT+MSH3 gene silencing for HD; Tau gene silencing for Alzheimer's; vHER2 antibody for brain mets	HTT+MSH3 gene silencing for HD; Tau gene Wholly-Owned			
UNDISCLOSED DISEASES / Five Gene The	N	leurocrine Collaboratio	n	
RARE NEUROLOGICAL DISEASE / Gene Th	Pfizer License			
CNS DISEASES / Two Gene Therapy Progra	Novartis License			

*After the Phase 1 readout, Voyager has the option to either: (1) co-develop and co-commercialize with Neurocrine Biosciences in the U.S. under a 60/40 cost- and profit-sharing arrangement (Neurocrine/Noyager), or (2) grant Neurocrine Biosciences full U.S. commercial rights in exchange for milestone payments and royalties based on U.S. sales. ** After the Phase 1 readout, Voyager has the option to either: (1) co-develop and co-commercialize with Neurocrine Biosciences in the U.S. under a 50/50 cost- and profit-sharing arrangement, or (2) grant Neurocrine Biosciences full U.S. commercial rights in exchange for milestone payments and royalties based on U.S. sales.

TRACERTM AAV Capsid Platform

The TRACER[™] AAV Difference

Delivery will enable the future of neuro genetic medicine

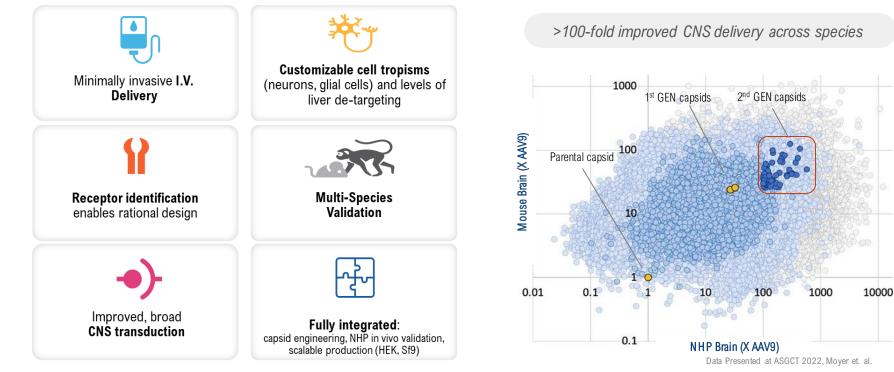
DELIVERY currently limits **NEUROLOGY**

Difficult to deliver across blood-brain barrier (BBB)

DELIVERY currently limits **GENE THERAPY**

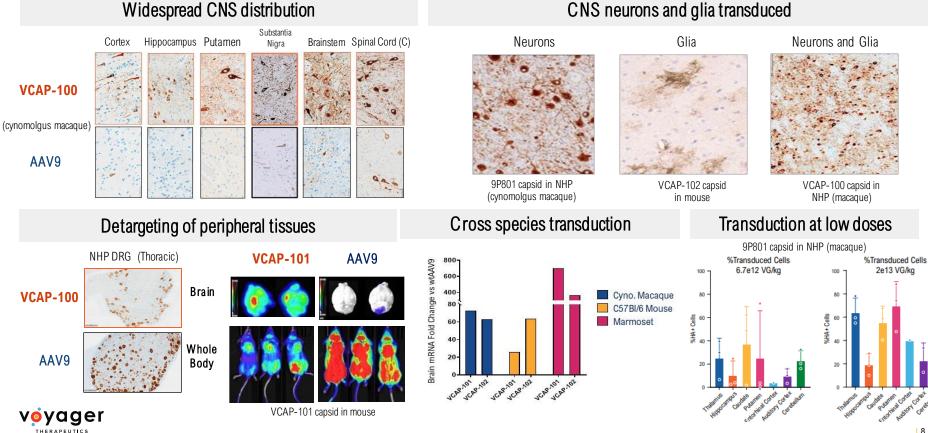
Narrow therapeutic windows with local or systemic delivery

NEURO DELIVERY of **GENETIC MEDICINES** COMBINES THESE DELIVERY CHALLENGES


IV dosing: Low BBB penetration. Weak CNS transduction. **Local dosing (IT, IP*):** Steep gradients. Restricted penetration within brain.

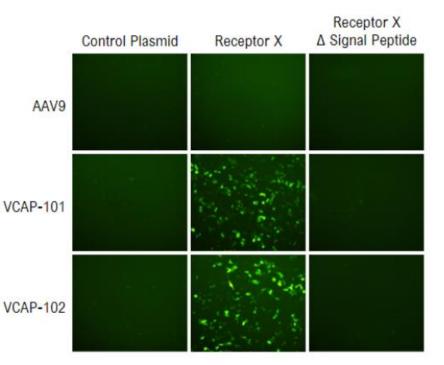
VOYAGER IS ENABLING DELIVERY of **NEURO-GENETIC MEDICINES**

Voyager's novel TRACERTM-derived capsids power next-gen gene therapy


TRACER[™] capsid discovery platform derived from evaluation of 200M+ variants of AAV5 and AAV9

*Compared to conventional AAV9 dosed intravenously in non-human primates (NHPs)

Novel IV delivered capsids with potential to transform CNS treatment



Receptor identified for TRACER™ capsid family

- ✓ Receptor identified for one of our most promising TRACER[™] AAV capsids (ESGCT 2022)
- Expression confirmed in human endothelial cells and multiple CNS cell types

Characterizing the applicable receptor and confirming activity with the human orthologue increases probability that the related capsid will cross the BBB in humans

- Should facilitate rational design of AAV capsids for targeted IV delivery
- May enable IV delivery to CNS for diverse therapeutic modalities (preclinical experiments underway)

ESGCT 2022: Identification of a Cell Surface Receptor Utilized by an Engineered BBB-Penetrant Capsid Family with Enhanced Brain Tropism in Non-Human Primates and Mice

Transformative CNS Pipeline

Combining capsids with diverse payloads

Collaboration demonstrates how Voyager is enabling neuro genetic medicine

NOVEL CAPSIDS

• IV-delivered

- 100-1000X CNS transduction
- Multiple CNS cell tropisms (neurons, glial cells); liver/DRG de-targeting
- Capsid receptor identification
 - Pfizer license option exercised
 - Novartis license option exercised
 - Neurocrine collaborating on multiple targets

DIVERSE PAYLOADS

- CNS diseases
- CNS targets

 \checkmark

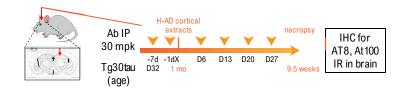
- Preclinical models
- Vectorizing payloads (siRNA, antibodies, gene replacement)
 - Neurocrine collaborating on GBA1 and FA programs plus five discovery programs
- Voyager advancing wholly-owned programs in gene replacement, silencing, antibodies

ENABLING NEURO-GENETIC MEDICINES

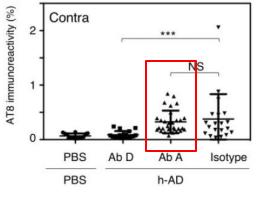
OPTIMAL CAPSID + OPTIMAL PAYLOAD = PROGRAM VALUE CREATION

Anti-tau antibody offers a new twist on an Alzheimer's target

HIGH UNMET NEED + COMMERCIAL POTENTIAL


~6 million people in U.S.*

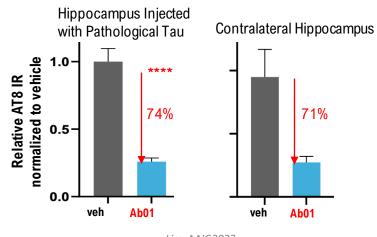
Multiple approaches needed: Like oncology, combination treatment may improve outcomes (i.e. anti-amyloid + antitau)


L	VALIDATED TARGET	EFFICIENT PATH TO PROOF-OF-BIOLOGY	ROBUST PRECLINICAL PHARMACOLOGY		
	TauPathology closelycorrelates with diseaseprogression and cognitivedecline	New Tau PET tracers enable imaging for tau pathology and use as clinical trial biomarkers	Voyager IV-delivered antibody inhibited spread of pathological tau by >70% in mouse seeding model (AAIC 2022)		
	Targate C tarminal domain				
	Targets C-terminal domainFailed approaches targetedN-terminal; more	STATUS: Lead development candidate selected			
	consistent than mid- domain	MILESTONE: Expect to initiate GLP tox in 2023 to enable IND H1 2024			

Voyager's anti-tau antibody is differentiated from other anti-tau antibodies

N-terminal Ab IPN002 is **not effective** in both mouse seeding model and clinic

Note: Ab A targets N-terminus (aa15-24, IPN002)


Albert*, Brain*, 2019

yager

THERAPEUTICS

Ab01 inhibits spread of pathological tau in mouse seeding model

Li u*, AAIC* 2022

13

Gene therapy approach to a validated target in ALS*

HIGH UNMET NEED + COMMERCIAL POTENTIAL

~20,000 people in U.S.**

~800 ALS patients have a SOD1 mutation

Incidence: 1 in 50,000**

Existing treatments are minimally effective; disease is typically fatal within 3 years of diagnosis

VALIDATED TARGET

SOD1

SOD1 mutations cause toxic gain of function in forms of familial ALS

Tofersen, under FDA review, is an ASO targeting SOD1 that has demonstrated clinical effect. Gene therapy approach could follow with more durable solution.

EFFICIENT PATH TO PROOF-OF-BIOLOGY

SOD1 measurable in CSF; plasma neurofilament light chain biomarkers measurable in plasma

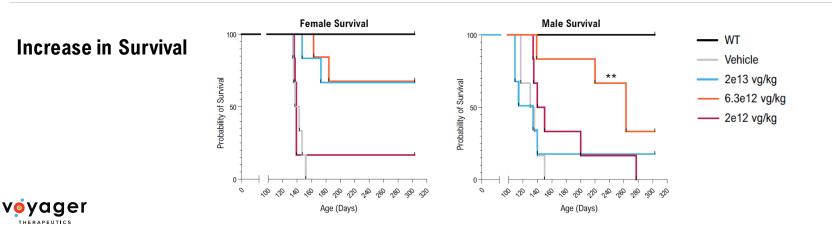
ROBUST PRECLINICAL PHARMACOLOGY

Preclinical data showed robust SOD1 knockdown and significant improvements in motor performance and survival

STATUS: Lead optimization underway

MILESTONE: ID lead candidate projected in H1 2023

*ALS: Amyotrophic Lateral Sclerosis **FYI: Epidemiology of ALS and Suspected Clusters | The ALS Association


SOD1 knockdown approach shows preclinical survival benefit in mouse models

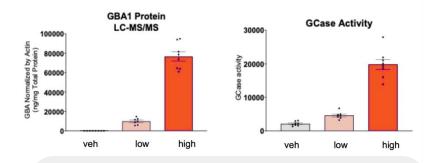
Strategy to combine highly potent siRNA construct with CNS-tropic, BBB penetrant TRACER capsid

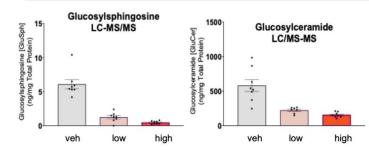
 May enable broad CNS knockdown of SOD1, potentially addressing disease manifestations beyond the spinal cord

Promising preclinical results in mouse model

- Robust SOD1 knockdown in all levels of the spinal cord with IV dosing using a mouse BBB penetrant capsid
- Significant improvements in motor performance, body weight and survival

GBA1 gene replacement; partnered with Neurocrine Jan 2023


HIGH UNMET NEED + COMMERCIAL POTENTIAL	VALIDATED TARGET	EFFICIENT PATH TO PROOF-OF-BIOLOGY	ROBUST PRECLINICAL PHARMACOLOGY	
~1 million people in U.S.* >10% of PD patients have a GBA1 mutation Potential to treat	GBA1 GBA1 mutations increase the risk of PD ~20-fold*	GBA1 mutations decrease expression of GCase protein, leading to substrate elevation.	Preclinical data demonstrate CNS target engagement and delivery of therapeutically relevant levels of GCase in GBA	
idiopathic PD	STATUS: Lead optimization underway	GCase and substrate measurable in CSF	loss of function mouse model.	
		MILESTONE: Advancing in collaboration with Neurocrine		


Restoration of GCase with IV-administered, BBB-penetrant AAV capsids

- BBB-penetrant AAV capsid provides *in vivo* proof-of-concept (POC) for increase in GCase with concomitant reduction of substrates
- Delivery of therapeutically relevant levels of GCase may disrupt disease process, and potentially slow neurodegeneration
- IV delivery with CNS-tropic capsid may enable widespread distribution to multiple affected brain regions and avoid need for more invasive approaches

GCase increased in GBA1 LOF mouse model

Substrate decreased in GBA1 LOF mouse model

Data shown reflects Day 0 IV dosing in GBA1 loss-of-function(LOF) mouse of 2E12, 2E13 vg/kg dosing of Voyager-optimized PHP.eB..GBA1, Day 28 necropsy with measures of GCase protein, activity, and substrate levels

HD gene therapy initiative leverages latest in disease biology

HIGH UNMET NEED +	VALIDATED TARGETS	EFFICIENT PATH TO	ROBUST PRECLINICAL		
COMMERCIAL POTENTIAL		PROOF-OF-BIOLOGY	PHARMACOLOGY		
~41,000 people in U.S.* Incidence: 0.7 in 100,000**	Allele-specific mHTT Target the mutant protein while preserving the healthy version, which may	Leveraging emerging fluid-based biomarkers and imaging	First-in-class approach based on evolving research on the role of somatic expansion in HD		
Currently no cure or	improve safety profile	STATUS: siRNA ap	Voyager is developing a vectorized		
treatment that can halt,	MSH3		siRNA approach to silence HTT allele-		
slow or reverse HD*	DNA repair enzyme		specifically and MSH3		
	potentially involved in harmful DNA expansions in the HTT gene		Early research initiative to determine if advancement warranted		

* Overview of Huntington's Disease - Huntington's Disease Society of America (hdsa.org)

** Modeling Manifest Huntington's Disease Prevalence Using Diagnosed Incidence and Survival Time - FullText - Neuroepidemiology 2021, Vol. 55, No. 5 - Karger Publishers

siRNA tau gene silencing approach for Alzheimer's disease

VALIDATED TARGET

HIGH UNMET NEED +
COMMERCIAL POTENTIAL

~6 million people in U.S.*

Multiple approaches needed: Like oncology, combination treatment may improve outcomes (i.e. anti-amyloid + antitau, or multiple anti-tau approaches)

Tau		N
Pathology closely		er
correlates with disease		ра
progression and cognitive		cl
decline		
	Pathology closely correlates with disease progression and cognitive	Pathology closely correlates with disease progression and cognitive

siRNA gene silencing approach to lower tau within neurons (intracellular) New tau PET tracers enable imaging for tau pathology and use as clinical biomarkers

EFFICIENT PATH TO

PROOF-OF-BIOLOGY

ROBUST PRECLINICAL PHARMACOLOGY

New initiative leverages Voyager's tau expertise to target intracellular tau; may complement extracellular tau antibody

STATUS:

Voyager is optimizing siRNA tau gene silencing payloads

MILESTONE: Early research initiative to determine if advancement warranted

Partnerships

Track Record of Non-Dilutive Revenue

Multiple partnership structures driving value

PROVIDE:

- Validation (third-party buy-in, potential program use)
- Near-term funding (upfront and option exercise payments)
- Long-term funding (milestones and royalties)
- Multiple 'shots on goal' to prove human translation

PROVIDE:

- Significant long-term potential value (profit share or milestones and royalties)
- Cost savings (program funding)
- Validation (investment into program)
- Near-term funding (upfront, early development milestone payments)

PROVIDE:

- Opportunities to combine TRACER capsids and receptor technology with cutting-edge payloads and biologics, placing Voyager at forefront of neurogenetic medicine
- Various deal structures with range of participation being explored

DISCUSSIONS ONGOING

January 2023: Voyager strategic collaboration with Neurocrine for GBA1+

VOYAGER RECEIVES:

Strengthens balance sheet

Up-front consideration of \$175M (\$136M cash, \$39M equity purchase at 50% premium)

Secures program funding Program costs fully reimbursed*

Transformational downstream value

Up to \$4.2B in potential milestones (\$1.5B

development, \$2.7B commercial) + royalties [%]

- GBA: U.S. low double-digit to twenty; ex-U.S. high single-digit to mid-teen
- Rare CNS targets: U.S. high single-digit to midteen; ex-U.S. mid single-digit to low double-digit

Option to elect 50/50 cost/profit sharing in U.S. for GBA1 program following Phase 1

NEUROCRINE RECEIVES:

Worldwide rights to Voyager's GBA1 gene therapy program for Parkinson's disease and other GBA1-mediated diseases* and three gene therapy programs directed to rare CNS targets, each enabled by Voyager's nextgeneration TRACER[™] capsids, as well as a Board seat.

Existing partnership highlights

		Disease/Target (Cells, Tissues, Transgenes)	Upfront Payment	Potential Option + Option Exercise Fees	Potential Milestone Payments	Tiered Royalties
S N	IEUROCRINE OSCIENCES	GBA1 Program + 3 undisclosed targets	\$175 million (\$136 million cash; \$39 million equity	N/A	\$4.2 billion	GBA, U.S. low double-digit to twenty; ex- U.S. high single-digit to mid-teen. Rare CNS targets, U.S. high single-digit to mid- teen; ex-U.S. mid single-digit to low double-digit
۲ ال	NOVARTIS	2 undisclosed CNS targets (expandable to 2 additional rare CNS targets)	\$54 million	\$25 million – exercised, \$61 million potential expansion	\$600 million for exercised targets, \$600 million potential expansion	Mid- to high-single-digit
Ş	Pfizer	1 undisclosed rare neurologic disease target	\$30 million	\$10 million – exercised	\$290 million	Mid- to high-single-digit
S BI	IEUROCRINE OSCIENCES	Friedreich's Ataxia + 2 undisclosed targets	\$165 million (\$115 million cash; \$50 million equity)	N/A	\$1.3 billion	High-single-digit to high-teens in the U.S. and mid-single-digit to mid-teens ex-U.S.

\$200 MILLION in 2023 payments extended cash runway into 2025

Summary

Management team brings neurology and gene therapy expertise

Al Sandrock, M.D., Ph.D. Chief Executive Officer

voyager

THERAPEUTICS

Robin Swartz Chief Operating Officer

Todd Carter, Ph.D. Chief Scientific Officer

BROAD

Peter Pfreundschuh Chief Financial Officer

FREQUENCY

Allen Nunnally Chief Business Officer

Michelle Quinn Smith Chief Human Resources Officer

> Flagship Pioneering

Robert Hesslein General Counsel

Trista Morrison SVP Corporate Affairs

25

Recent highlights and upcoming milestones

Q3 2022	\checkmark	Pfizer option exercised on capsid for rare neurologic target; \$10M payment
Q1 2023	\checkmark	Neurocrine collaboration for GBA1 + 3 discovery programs; \$175M payment, potential \$4.4B deal
Q1 2023	\checkmark	Launched updated HD early research initiative: allele-specific mHTT + MSH3 gene silencing
Q1 2023	\checkmark	Selected lead candidate in anti-tau antibody program for Alzheimer's disease
Q1 2023		Novartis option exercised on capsids for two CNS targets; \$25M payment
Q1 2023	⊘	Launched Alzheimer's early research initiative: tau gene silencing
Q1 2023	0	AD/PD 2023 Conference: presenting data on GBA1 Parkinson's and anti-tau antibody programs
H1 2023	0	Expect to ID lead candidate for SOD1 ALS gene therapy
ONGOING	0	Advancing GBA1 Parkinson's and FXN Friedreich's Ataxia gene therapy programs with Neurocrine
ONGOING	0	Potential for additional value-creating partnerships; discussions ongoing

in

